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Abstract

Formal and informal Bayesian approaches are increasingly being used to treat forcing,
model structural, parameter and calibration data uncertainty, and summarize hydro-
logic prediction uncertainty. This requires posterior sampling methods that approxi-
mate the (evolving) posterior distribution. We recently introduced the DiffeRential Evo-5

lution Adaptive Metropolis (DREAM) algorithm, an adaptive Markov Chain Monte Carlo
(MCMC) method that is especially designed to solve complex, high-dimensional and
multimodal posterior probability density functions. The method runs multiple chains
in parallel, and maintains detailed balance and ergodicity. Here, I present the latest
algorithmic developments, and introduce a discrete sampling variant of DREAM that10

samples the parameter space at fixed points. The development of this new code,
DREAM(D), has been inspired by the existing class of integer optimization problems,
and emerging class of experimental design problems. Such non-continuous parameter
estimation problems are of considerable theoretical and practical interest. The theory
developed herein is applicable to DREAM(ZS) (Vrugt et al., 2011) and MT-DREAM(ZS)15

(Laloy and Vrugt, 2011) as well. Two case studies involving a sudoku puzzle and rainfall
– runoff model calibration problem are used to illustrate DREAM(D).

1 Introduction

Formal and informal Bayesian methods have found widespread application and use to
summarize parameter and model predictive uncertainty in hydrologic modeling. These20

parameters generally represent model dynamics, but could also include rainfall multipli-
ers (Kavetski et al., 2006; Kuczera et al., 2006; Vrugt et al., 2008), error model variables
(Smith et al., 2008; Schoups and Vrugt, 2010), and calibration data measurement er-
rors (Sorooshian and Dracup, 1980; Schaefli et al., 2007; Vrugt et al., 2008). Monte
Carlo methods are admirably suited to generate samples from the posterior param-25

eter distribution, but generally inefficient when confronted with complex, multimodal,
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and high-dimensional model-data synthesis problems. This has stimulated the devel-
opment of Markov Chain Monte Carlo (MCMC) methods that generate a random walk
through the search (parameter space) and iteratively visit solutions with stable frequen-
cies stemming from an invariant probability distribution. If well designed, such MCMC
methods should be more efficient than brute force Monte Carlo or importance sampling5

methods.
To visit configurations with a stable frequency, an MCMC algorithm generates trial

moves from the current position of the Markov chain xt−1 to a new state z. The earliest
and most general MCMC approach is the random walk Metropolis (RWM) algorithm
(Metropolis et al., 1953). Assume that we have already sampled points {x0,...,xt−1}10

this algorithms proceeds in the following three steps. First, a candidate point z is
sampled from a proposal distribution q that depends on the present location, xt−1 and
is symmetric, q(xt−1,z) = q(z,xt−1). Next, the candidate point is either accepted or
rejected using the Metropolis acceptance probability:

α(xt−1,z)=

{
min

(
π(z)

π(xt−1) ,1
)

if π(xt−1)>0

1 if π(xt−1)=0
(1)15

where π(·) denotes the probability density function (pdf) of the target distribution. Fi-
nally, if the proposal is accepted the chain moves to z, otherwise the chain remains
at its current location xt−1. The result is a Markov chain which under some regularity
conditions has a unique stationary distribution with pdf π(·).

The standard RWM algorithm has been designed to maintain detailed balance with20

respect to π(·) at each step in the chain:

π(xt−1)p(xt−1→z)=π(z)p(z→xt−1) (2)

where π(xt−1) (π(z)) denotes the probability of finding the system in state xt−1(z), and
p(xt−1→ z)(p(z→ xt−1)) denotes the conditional probability to perform a trial move
from xt−1 to z (z to xt−1). Hastings (Hastings, 1970) extended Eq. (1) to include non-25

symmetrical proposal distributions, i.e. q(xt−1,z) 6=q(z,xt−1) in which a proposal jump
4027
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to z and the reverse jump do not have equal probability. This extension is called the
Metropolis Hastings algorithm (MH), and has become the basic building block of many
existing MCMC sampling schemes.

Existing theory and experiments prove convergence of well-constructed MCMC
schemes to the appropriate limiting distribution under a variety of different conditions.5

In practice, this convergence is often observed to be impractically slow. This deficiency
is frequently caused by an inappropriate selection of q(·) used to generate trial moves
in the Markov Chain. This inspired Vrugt et al. (2008, 2009) to develop a simple adap-
tive RWM algorithm called Differential Evolution Adaptive Metropolis (DREAM) that
runs multiple chains simultaneously for global exploration, and automatically tunes the10

scale and orientation of the proposal distribution during the evolution to the posterior
distribution. This scheme is an adaptation of the Shuffled Complex Evolution Metropolis
(Vrugt et al., 2003) global optimization algorithm and has the advantage of maintaining
detailed balance and ergodicity while showing excellent efficiency on complex, highly
nonlinear, and multimodal target distributions (Vrugt et al., 2008, 2009).15

In DREAM, N different Markov Chains are run simultaneously in parallel. If the state
of a single chain is given by a single d-dimensional vector x, then at each generation
the N chains in DREAM define a population X, which corresponds to an N x d matrix,
with each chain as a row. Jumps in each chain i = {1,...,N} are generated by taking a
fixed multiple of the difference of the states of randomly chosen pairs of chains of X:20

zi =xi + (1d +ed )γ(δ,d ′)

 δ∑
j=1

xr1(j )−
δ∑

n=1

xr2(n)

+εd (3)

where δ signifies the number of pairs used to generate the proposal, xr1(j ) and x
r2(n)

are randomly selected without replacement from the population X
−i
t−1 (the population

without xi
t−1); r1(j ),r2(n)∈ {1,...,N} and r1(j ) 6= r2(n). The values of ed and εd are

drawn from Ud (−b,b) and Nd (0,b∗) with b and b∗ small compared to the width of the25

target distribution, respectively, and the value of the jump-size, γ depends on δ and
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d ′, the number of dimensions that will be updated jointly. By comparison with RWM, a
good choice for γ = 2.4/

√
2δd ′ (Roberts and Rosenthal, 2001; Ter Braak, 2006). This

choice is expected, for Gaussian and Student target distributions, to yield an accep-
tance probability of 0.44 for d ′ = 1, 0.28 for d ′ = 5 and 0.23 for large d ′. Every 5th
generation γ = 1.0 to facilitate jumping between disconnected posterior modes (Vrugt5

et al., 2008).
The difference vector in Eq. (3) contains the desired information about the scale and

orientation of the target distribution, π(x|·). By accepting each jump with the Metropo-

lis ratio min
{
π(zi |·)/π(xi

t−1|·),1
}

, a Markov chain is obtained, the stationary or limiting

distribution of which is the posterior distribution. The proof of this is given in Ter Braak10

and Vrugt (2008) and Vrugt et al. (2008, 2009). Because the joint pdf of the N chains
factorizes to π(x1|·)× ...×π(xN |·), the states x

1 ...xN of the individual chains are inde-
pendent at any generation after DREAM has become independent of its initial value.
After this burn-in period, the convergence of DREAM can thus be monitored with the
R̂-statistic of Gelman and Rubin (1992). This convergence diagnostic compares the15

within and in-between variances of the N different chains.
Various recent contributions have shown the utility of MCMC simulation with DREAM

to treat different error sources, and help quantify and analyze parameter, model struc-
tural, forcing, and calibration data uncertainty (Vrugt et al., 2008, 2009b; Dekker et
al., 2010; He et al., 2010; Huisman et al., 2010; Keating et al., 2010; Minasny et al.,20

2011; Schoups and Vrugt, 2010; Vrugt et al., 2011). These, and most other model-data
synthesis studies in the earth sciences, typically involve continuous variables (parame-
ters and probability density functions) that can take on any numerical value within their
prior ranges defined by the user. Yet, relatively little attention has been given to pos-
terior sampling problems involving discrete variables. The existing DREAM framework25

has been developed based on the assumption of continuity of the parameter space,
lim
x→c

π(x) = π(c), and thus will exhibit some practical problems when confronted with

discrete variables. Such non-continuous parameter estimation problems are abundant
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in many fields of study, and therefore of considerable theoretical and practical inter-
est. For instance, in hydrology there is increasing interest in using optimization ap-
proaches to help find optimal experimental design strategies that attempt to minimize
cost, parameter and model predictive uncertainty, or combinations thereof. This in-
volves selecting one or multiple different measurement locations amongst a discrete5

set of possibilities. The solution of this problem lies in an adaptation of DREAM, and
its various extensions including DREAM(ZS) (Vrugt et al., 2011), and MT-DREAM(ZS)
(Laloy and Vrugt, 2011).

In this paper we present a discrete implementation of DREAM, that is especially
designed to solve noncontinuous search and optimization problems. This new code,10

DREAM(D) uses DREAM as its main building block, yet implements integer search to
facilitate solving discrete sampling problems. The DREAM(D) algorithm maintains de-
tailed balance and ergodicity, and achieves excellent performance across a range of
noncontinuous posterior sampling problems. The DREAM(D) code is perhaps the only
method available to solve discontinuous parameter estimation problems, and simulta-15

neously provide an estimate of uncertainty.
The remainder of this paper is organized as follows. Section 2 presents a short intro-

duction to MCMC, followed by a detailed description of DREAM(D) in Sect. 3. Section 4
demonstrates the performance of DREAM(D) using two different case studies involving
a simple 52-dimensional sudoku puzzle, and a rainfall-runoff model calibration problem.20

These results are illustrated in detail, and used to highlight further possible improve-
ments. Finally, in Sect. 5 we summarize the methodology and discuss the results.

2 Nonlinear optimization involving discrete variables

Discrete optimization problems are abundant in many fields of study, and have begun
to appear in the hydrologic literature (Furman et al., 2004; Harmancioglu et al., 2004;25

Perrin et al., 2008; Kleidorfer et al., 2008; Neuman et al., 2011). To illustrate a non-
continuous parameter estimation problem, please consider Fig. 1 that presents a tile
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puzzle consisting of sixteen different surfaces. Each tile contains a different letter from
the alphabet. The goal is to get the letters in the appropriate order. The solution to this
problem is immediately obvious to a human, but not immediately clear to a computer.
A search algorithm is therefore required to solve this problem.

If we assign numbers to each letter, a= 1, b= 2 and so forth, we could measure5

the distance from our initial guess to the actual solution. This constitutes an integer
optimization problem. The tiles can only take on integer values, between 1 and 16. This
results in a d = 16 dimensional search problem with each dimension x ∈ [1,2,...,16].
Figure 1a illustrates an initial guess, and in a series of panels (B⇒ D) it is shown how
DREAM(D) translates this guess into the final solution.10

Other problems that require integer search involve finding optimal experimental de-
sign strategies. Usually this consists of finding the best measurement locations among
a prior defined and often restricted set of possibilities. This requires integer optimiza-
tion in a similar way as done in the tile puzzle.

3 DREAM(D)⇒ differential evolution adaptive metropolis with discrete sampling15

We now describe our new code, entitled DREAM(D), which uses DREAM as main build-
ing block.

Let X be a N ×d -matrix defining the N initialized starting positions, xi , i = 1,...,N
of the different Markov chains by drawing samples from pd (x), the prior distribution.
Similarly, let Z be an external archive of points that periodically appends the elements20

of X at regular intervals. The initial population [Xt;t = 0] is translated into a sample
from the posterior target distribution using the following pseudo code:

1. Set T ←1
FOR m←1,...,K DO (POPULATION EVOLUTION)
FOR i←1,...,N DO (CHAIN EVOLUTION)25
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a. Generate a candidate point, zi in chain i ,

zi =xi +

∥∥∥∥∥∥(1d +ed )γ(δ,d ′)

 δ∑
j=1

xr1(j )−
δ∑

n=1

xr2(n)

+εd

∥∥∥∥∥∥
d

(4)

where the function ‖ · ‖d rounds each element j = 1,...,d of the jump vector
to the nearest integer.

b. Replace each element (j =1,...,d ) of the proposal zij with zij using a binomial5

scheme with probability 1−CR,

zij =

{
xi
j if U≤1−CR, d ′ =d ′−1

zij otherwise
j=1,...,d (5)

where CR denotes the crossover probability, and U ∈ [0,1] is a draw from a
uniform distribution.

c. Compute π(zi ) and accept the candidate points with Metropolis acceptance10

probability, α(xi ,zi ),

α(xi ,zi )=

{
min

(
π(zi )
π(xi )

,1
)

if π(xi )>0

1 if π(xi )=0
(6)

d. If accepted, move the chain to the candidate point, xi =z
i , otherwise remain

at the old location, xi .

15

END FOR (CHAIN EVOLUTION) END FOR (POPULATION EVOLUTION)

2. Append X to Z.

3. Compute the Gelman-Rubin convergence diagnostic, R̂j (Gelman and Rubin,
1992) for each dimension j =1,...,d using the last 50% of the samples of Z.
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4. If R̂j ≤1.2 for j =1,...,d or T > Tmax, stop and go to step 5, otherwise set T ← T +1
and go to POPULATION EVOLUTION.

5. Summarize the posterior pdf using Z after discarding the initial and burn-in sam-
ples.

The DREAM(D) algorithm presented herein is similar as DREAM, but especially de-5

signed to solve discrete search and optimization problems. The function d·cd in Eq. (4)
forces the jumps to maintain integer values, and maintains detailed balance (as demon-
strated later). Compared to the original DREAM sampling scheme, DREAM(D) contains
two additional algorithmic parameters. These are Tmax, the maximum number of gen-
erations, and K , the thinning rate used to periodically add samples to Z. Based on10

recommendations in (Vrugt et al., 2011), we set K = 10, and assign a large value for
Tmax, thus DREAM(D) automatically stops after convergence has been achieved. To
speed up convergence to the target distribution, DREAM estimates a distribution of
CR values during burn-in that favors large jumps over smaller ones in each of the N
chains. Details of this can be found in (Vrugt et al., 2008, 2009, 2011).15

The transition kernel in DREAM(D) is especially designed to handle discrete search
and optimization problems, yet only samples integer values. This is by no means
a limitation, but a simple computational trick is therefore required to solve non-integer
problems. For such problems, we discretize the range of each individual parameter into
equidistant intervals, and rewrite the actual problem using integers only. The posterior20

distribution of these integers is subsequently derived with DREAM(D). For example,
consider a discrete parameter that can only take on the values x1 ∈ [0,0.2,0.4,...,5].
We can rewrite this problem as: x1 =min(x1)+0.2j and sample j ∈ [0,1,...,25] using
DREAM(D). This approach, if deemed necessary, allows for a different discretization
of each individual parameter. Also, the simultaneous use of DREAM and DREAM(D),25

enables joint sampling of continuous and discrete parameters.
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3.1 DREAM(D)⇒ Detailed Balance?

We are now left with a proof that DREAM(D) yields an invariant distribution that is iden-
tical to the posterior distribution. For this we need to demonstrate that the transition
kernel in DREAM maintains detailed balance, and thus results in a reversible Markov
chain. This essentially means that the forward (p(xi→ z

i )) and backward (p(zi→x
i ))5

jump have equal probability at every single step in the chain. This is easy to proof for
standard RWM algorithms that use a fixed proposal distribution. Yet, the jumping distri-
bution used in DREAM(D) is adaptive, and continuously changes scale and orientation
en route to the posterior distribution. This significantly enhances efficiency, but it is not
immediately clear whether Eq. (4) also satisfies the detailed balance condition.10

In previous papers, we have given formal proofs of convergence of DREAM (Vrugt
et al., 2008), DREAM(ZS) (Vrugt et al., 2011), and MT-DREAM(ZS) (Laloy and Vrugt,
2011) to the appropriate limiting distribution. For simplicity, we use a hypothetical ex-
ample to illustrate that DREAM(D) maintains detailed balance. Lets consider a two-
dimensional, (d = 2) discrete sampling problem with N = 5 different chains, δ = 1, and15

γ =2.4/
√

2δd ′ =2.4/
√

2×1×2=1.2. The initial states of these chains are color coded
and depicted in Fig. 2, and used to generate candidate points. Lets assume that the
jump in the first chain (purple) uses the states of the 2nd (r1: blue), and 4th (r2: green)
chain, and that ej =εj =0; j =1,...,2. Following Eq. (4), the forward jump and proposal
point then becomes:20

zi =
[
2 2

]
+
∥∥∥1.2

([
4 4

]
−
[
5 1

])∥∥∥= [
2 2

]
+
∥∥∥[−1.2 3.6

]∥∥∥= [
1 6

]
(7)

This point is indicated in Fig. 2 with the red square. Lets assume that we accept this
candidate point, and chain 1 transitions to this new state.

We are now left with studying the probability of the backward jump. This requires
the green chain to be r1, and the blue chain to be r2, thus selected in opposite order25

from the previous jump. The chance of this backward jump is equal to the chance of
the forward jump because of the uniform random number generator used to select the
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respective chain pairs for the candidate point. Hence, the chance to select r1 as chain
2, and r2 as chain 4 is equal to drawing r2 =4, and r2 =2. Reversibility is thus ensured,
yet is is not directly obvious that this proof also holds for DREAM(D) that uses an explicit
integer rounding function in the transition kernel. If we proceed with our new selection
of r1 and r2 then the next candidate point becomes:5

zi =
[
1 6

]
+
∥∥∥1.2

([
5 1

]
−
[
4 4

])∥∥∥= [
1 6

]
+
∥∥∥[1.2 −3.6

]∥∥∥= [
2 2

]
(8)

Indeed, the reverse jump results in a proposal point that is identical to the initial
state of chain 1 (purple point), and reversibility is ensured. Apparently, the function,
‖ · ‖d , used to round the d -dimensional jumping vector to the closest integers does not
violate detailed balance. This proof also holds when ed , and εd are drawn from their10

respective symmetric probability distributions, and when δ >1 and d >2. We leave this
up to the reader. This concludes the proof of detailed balance.

A final remark is appropriate. In theory it is possible that at least one of the d argu-
ments, yd of the rounding function, ‖yd ‖ has a fractional part of .5. Or in mathematical
notation, ∃yj ∈Y j : yj−‖yj‖=0.5;j =1,...,d , where Y j denotes the feasible jump space15

of the j th dimension, generated with Eqs. (3) or (4). If this (mathematical) statement
is true, then the respective argument(s) is (are) rounded down (floor) to the closest in-
teger. This directed rounding violates detailed balance and introduces a possible bias
in the proposal jump. A simple one-dimensional example will immediately illustrate
this, but the chance this bias happens in practice is virtually zero. If nothing else, the20

stochastic nature of ed ∼Ud (−b,b), and εd ∼Nd (0,b∗) will eliminate this possibility. In
the rare event of yj −‖yj‖= 0.5 we implement stochastic rounding, and choice among
yj −0.5 and yj +0.5 with equal probability. This ensures reversibility of the Markov
chains generated with DREAM(D). Note that the size of Y j essentially depends on the
choice of the prior distribution.25
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4 Case studies

I now present two different case studies with increasing complexity. The first study
consists of a typical integer estimation problem, and involves a sudoku puzzle. This
puzzle has become quite popular in the past 10 years, and many newspapers, jour-
nals, and magazines around the world publish sudokus for entertainment. This syn-5

thetic study illustrates the ability of DREAM(D) to help solve a relatively difficult integer
optimization problem. The second study is concerned with estimating parameters in
a mildly complex lumped watershed model using observed daily discharge data from
the Guadalupe River in Texas. The parameter estimation problem is posed in discrete
form, and solved using DREAM(D). This results in a discrete The posterior parameter10

distribution is compared against a classical continuous formulation of the model cali-
bration inverse problem separately inferred using DREAM(ZS), and used to highlight the
advantages of DREAM(D) and discrete sampling.

4.1 The daily sudoku

The first case study considers a synthetic integer parameter estimation problem, in-15

volving a sudoku puzzle. The objective is to fill a 9×9 grid with digits so that each
column, each row, and each of the nine 3×3 sub-grids that make up the total square
contains values of 1 to 9. The same single integer may not appear twice in the same
9×9 playing board row or column or in any of the nine 3×3 subregions. The puzzle
setter provides a partially completed grid, which typically has a single (unique) solution.20

The puzzle was popularized in 1986 by the Japanese puzzle company Nikoli, under the
name Sudoku, meaning single number (Hayes, 2006). Nowadays, Sudoku puzzles are
very popular, and widely practised by many millions of people throughout the world.

I consider the Sudoku puzzle in Fig. 3, taken from Wikipedia (http://en.wikipedia.
org/wiki/Sudoku). The initial grid is depicted at the left-hand side, whereas the final25

solution is presented at the right-hand side. In this particular puzzle, the solution at
29 different cells is known, leaving us with d = 81−29 = 52 parameter values to be
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estimated. These parameters can take on values between 1 to 9. Figure 4 illustrates
the sampled values of DREAM(D) at various stages during the integer search. A total
of N = 25 different chains were used to search the parameter space, and the initial
sample was created using Latin Hypercube Sampling. I did not impose any constraints
on this initial solution, and thus each value of 1 to 9 can appear in any number in the5

grid. The log-likelihood function measures the constraint violation, details of which are
outside the scope of this publication.

The first grid, at the left-hand side of Fig. 4 presents an example of a possible starting
solution used in one of the chains. Obviously, this solution is rather bad, and violates
each of the three different constraints discussed previously (1 to 9 in each column10

and row, and each 3×3 subregion). The second grid, Fig. 4b, shows considerable
improvements, and better resemblances the final solution. The third panel in Fig. 4c is
a further refinement, but with a few noticeable deviations from the true solution. Finally,
after about 1 million sudoku function evaluations, the puzzle is successfully solved
(Fig. 4d).15

Obviously, it is inspiring that DREAM(D) is able to successfully solve a Sudoku puzzle,
but the required number of function evaluations (computational time) to do so is rather
large. Indeed, a branch and bound optimization approach would be about 3 orders
of magnitude more efficient. Such an approach shuffles the d = 52 integer values
until all constraint are met. We could implement this procedure in DREAM(D), and20

change the proposal distribution in such a way that jumps in each individual chain are
no longer created by taking the difference of the states of two (or more) other chains
but simply generated by shuffling selected parameter values of the same chain. Yet,
it is not directly obvious how to make such modification and ensure reversibility of the
Markov chain. This is an interesting problem, and deserves additional investigation,25

and theoretical development.
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4.2 Watershed model calibration using discrete parameter estimation

The final case study involves flood forecasting, and consists of the calibration of a mildly
complex lumped watershed model using historical data from the Guadalupe River at
Spring Branch, Texas. This is the driest of the 12 MOPEX basins described in the study
of Duan et al. (2006). The model structure and hydrologic process representations are5

found in (Schoups and Vrugt, 2010). The model transforms rainfall into runoff at the
watershed outlet using explicit process descriptions of interception, throughfall, evap-
oration, runoff generation, percolation, and surface and subsurface routing. Table 1
summarizes the seven different model parameters, and their prior uncertainty ranges.
Each parameter is discretized equidistantly in 250 intervals with respective step size10

listed in the last column at the right hand side. This gridding is necessary to create
a non-continuous, discrete, parameter estimation problem. Unlike the previous case
study in which integer values are sampled only, this particular study (mostly) involves
non-integer values.

Daily discharge, mean areal precipitation, and mean areal potential evapotranspi-15

ration were derived from (Duan et al., 2006) and used for model calibration. Details
about the basin, experimental data, and likelihood function can be found there, and
will not be discussed herein. The same model and data was used in a previous study
(Schoups and Vrugt, 2010), and used to introduce a generalized likelihood function for
heteroscedastic, non-Gaussian, and correlated (streamflow) prediction errors.20

Figure 5 presents histograms of the marginal distribution of a selected few hydrologic
model parameters using five years of observed daily discharge data. The top panel
presents the results of DREAM(D), whereas the bottom panel presents the results for
a continuous parameter space. These histograms were derived by separately running
DREAM for the same data set and model. Notice the close agreement between the25

histograms derived with both MCMC methods. This is a testament to the ability of
DREAM(D) to successfully solve discrete posterior parameter estimation problems. The
influence of gridding is hardly noticeable, but becomes apparent if we use at least 25
bins to represent the marginal density (not shown herein).
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To better illustrate the effect of discretization, please consider Figure 6 that presents
two-dimensional scatter plots of the DREAM(D) derived posterior samples for a few se-
lected parameter pairs. The bottom panel shows similar plots but then assuming conti-
nuity of the parameter space. The effect of gridding is immediately apparent. Whereas
the original bivariate scatter plots sample the parameter space in a (bloodstain) spatter5

pattern, two-dimensional plots of the posterior samples derived with DREAM(D) exhibit
an obvious grid pattern with horizontally and vertically aligned points. The posterior
samples take on discrete values with a distance between subsequent points that is
similar to the intervals listed in Table 1. Despite this difference in sampling pattern, the
shape of the DREAM and DREAM(D) derived bivariate scatter plots are very similar,10

commensurate with the covariance structure of the posterior distribution. The results
presented in Fig. 5 inspire confidence in the ability of DREAM(D) to solve noncontinu-
ous posterior sampling problems.

The excellent correspondence of the posterior parameter distributions derived with
DREAM and DREAM(D) results in marginal differences of the resulting streamflow pre-15

dictions. I therefore do not show any times series plots of model predictions, and cor-
responding 95% uncertainty ranges. Such plots can be found in (Schoups and Vrugt,
2010) and details can be found in that publication. It is interesting to observe that the
maximum log-likelihood value of 543 found with DREAM(D) is somewhat larger than its
counterpart estimated with DREAM (540). This difference was consistently observed20

for multiple different trials with both MCMC algorithms.
To provide better insights into the efficiency of DREAM(D), Fig. 7a plots the evolution

of the R̂-statistic of Gelman and Rubin (Gelman and Rubin, 1992) for each of the
different parameters. To benchmark these results, the bottom panel (Fig. 7b) illustrates
the convergence results of DREAM assuming continuity of the parameter space. The25

presented traces represent an average of 25 different MCMC trials. The convergence
speed for both algorithms is strikingly similar. Both MCMC methods need about 30 000
model evaluations to converge to a stationary (limiting) distribution (indicated with the
dashed blue horizontal line). Although gridding significantly reduces the size of the
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feasible parameter space, this has no immediate effect on sampling efficiency. An
approximately similar number of model runs is required to converge to and explore the
posterior target distribution. Yet, this by no means is a universal finding. My initial
results to date for more complex models with much higher parameter dimensionality
demonstrate considerable enhancements in efficiency (sometimes dramatically) when5

solving the calibration problem in the discretized rather than continuous space. Such
transformation is particularly useful for insensitive parameters as gridding significantly
reduces the space of feasible solutions. Further research on this topic is warranted.

5 Conclusions

In the past decade much progress has been made in the development of sampling10

algorithms for statistical inference of the posterior parameter distribution. The typical
assumption in this work is that the parameters are continuous and can take on any
value within their upper and lower bounds. Unfortunately, such problems typically do
not work for discrete parameter estimation problems. Such problems are abundant
in many fields of study, and therefore of considerable theoretical and practical interest.15

Examples include selecting among different measurement locations in the design of op-
timal experimental strategies, finding the best members of an ensemble of predictors,
and more generally discrete model calibration problems. Here, I have introduced a dis-
crete MCMC simulation algorithm that is especially designed to solve non-continuous
posterior sampling problems. This method, entitled DREAM(D) uses DREAM as its20

main building block, yet uses a modified proposal distribution to facilitate solve discrete
sampling problems. The DREAM(D) algorithm maintains detailed balance and ergod-
icity, and receives good performance across a range of problems involving a sudoku
puzzle, and discrete rainfall – runoff model calibration problem.

The theory developed herein is easily implemented in DREAM(ZS) (Vrugt et al., 2011)25

and MT-DREAM(ZS) (Laloy and Vrugt, 2011), which provides a venue to further increase
the efficiency of MCMC simulation. The DREAM(D) code is written in MATLAB and is
available upon request (jasper@uci.edu).
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Vrugt, J. A., Nualláin, B. Ó, Robinson, B. A., Bouten, W., Dekker, S. C., and Sloot, P. M. A.: Ap-

plication of parallel computing to stochastic parameter estimation in environmental models,
Comput. Geosci., 32(8), doi:10.1016/j.cageo.2005.10.015, 1139–1155, 2006.

Vrugt, J. A., Laloy, E., and ter Braak, C. J. F.: Differential evolution adaptive Metropolis with25

sampling from past states, SIAM J. Optimiz., in review, 2011. 4040

4044

http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/8/4025/2011/hessd-8-4025-2011-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/8/4025/2011/hessd-8-4025-2011-discussion.html
http://creativecommons.org/licenses/by/3.0/
http://dx.doi.org/10.1007/s11222-008-9104-9
http://dx.doi.org/10.1007/s00477-008-0274-y
http://dx.doi.org/10.1029/2007WR006720
http://dx.doi.org/10.1029/2002WR001642
http://dx.doi.org/10.1016/j.cageo.2005.10.015


HESSD
8, 4025–4052, 2011

DREAM(D)→ discrete
MCMC simulation

J. A. Vrugt

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Table 1. Prior Uncertainty Ranges of Hydrologic and Error Model Parameters.

Parameter Symbol Minimum Maximum Units Step size

Maximum interception Imax 0 10 mm 0.02
Soil water storage capacity Smax 10 1000 mm 1.98
Maximum percolation rate Qmax 0 100 mm d−1 0.20
Evaporation parameter αE 0 100 – 0.20
Runoff parameter αF −10 10 – 0.04
Time constant, fast reservoir KF 0 10 days 0.02
Time constant, slow reservoir KS 0 150 days 0.30

Heteroscedasticity intercept σ0 0 1 mm/d 0.002
Heteroscedasticity slope σ1 0 1 – 0.002
Autocorrelation coefficient φ1 0 1 – 0.002
Kurtosis parameter β −1 1 – 0.004
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Fig. 1. A 4×4 square tile puzzle with 16 different letters. The goal is to get the letters in
order of the alphabet. Each letter is assigned a different integer value, and the resulting inverse
problem is solved using DREAM(D). The panels (B)–(D) show the various steps of DREAM(D)
to the target solution.
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Fig. 2. Illustration of detailed balance: two-dimensional parameter estimation problem with
x1 ∈ [0,7] and x2 ∈ [0,7]. The color dots denote the starting points of the N = 5 different chains.
The red square signifies the candidate point of the first chain and is created by selecting the
blue chain as r1 and green chain as r2. One step later, after moving to the red square, the
backward jump has equal probability, as there is an equal chance of drawing r1 (green) and r2
(blue) in reversed order.
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(A) (B)

From: Wikipedia

Fig. 3. The daily sudoku: (A) Initial solution, and (B) Final solution. The black numbers were
given, whereas the solution numbers are marked in red.
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Fig. 4. Sudoku puzzle: Evolution of the DREAM(D) sampled parameter space to the posterior
distribution: (A) Typical starting solution, (B) Intermediate solution, (C) Nearly final solution,
and (D) Final solution.
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Fig. 5. Histogram of the DREAM(D) derived marginal posterior distributions of the (A) Imax,
(B) KS, and (C) φ1 rainfall – runoff and error model parameters (in red). For convenience, only a
few parameters are plotted. To benchmark the results of DREAM(D) the bottom panel illustrates
the results for DREAM (in blue), with the common assumption of a continuous parameter space.
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Fig. 6. Two-dimensional scatter plots of the DREAM(D) derived posterior samples (top panel:
red), and corresponding bivariate samples estimated with DREAM (bottom panel: blue). Only
a few parameter pairs are shown as this is sufficient to illustrate the similarity of the sampled
distributions.
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Fig. 7. Simulated traces of the R̂-statistic of Gelman and Rubin (Gelman and Rubin, 1992)
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tinuous sampling) MCMC algorithms. Each parameter is coded with a different color. A similar
convergence speed is observed for both algorithms.
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